Time-varying bispectral analysis of visually evoked multi-channel EEG
نویسنده
چکیده
Theoretical foundations of higher order spectral analysis are revisited to examine the use of time-varying bicoherence on non-stationary signals using a classical short-time Fourier approach. A methodology is developed to apply this to evoked EEG responses where a stimulus-locked time reference is available. Short-time windowed ensembles of the response at the same offset from the reference are considered as ergodic cyclostationary processes within a nonstationary random process. Bicoherence can be estimated reliably with known levels at which it is significantly different from zero and can be tracked as a function of offset from the stimulus. When this methodology is applied to multichannel EEG, it is possible to obtain information about phase synchronization at different regions of the brain as the neural response develops. The methodology is applied to analyze evoked EEG response to flash visual stimulii to the left and right eye separately. The EEG electrode array is segmented based on bicoherence evolution with time using the mean absolute difference as a measure of dissimilarity. Segment maps confirm the importance of the occipital region in visual processing and demonstrate a link between the frontal and occipital regions during the response. Maps are constructed using bicoherence at bifrequencies that include the alpha band frequency of 8Hz as well as 4 and 20Hz. Differences are observed between responses from the left eye and the right eye, and also between subjects. The methodology shows potential as a neurological functional imaging technique that can be further developed for diagnosis and monitoring using scalp EEG which is less invasive and less expensive than magnetic resonance imaging.
منابع مشابه
Real Time Driver’s Drowsiness Detection by Processing the EEG Signals Stimulated with External Flickering Light
The objective of this study is development of driver’s sleepiness using Visually Evoked Potentials (VEP). VEP computed from EEG signals from the visual cortex. We use the Steady State VEPs (SSVEPs) that are one of the most important EEG signals used in human computer interface systems. SSVEP is a response to visual stimuli presented. We present a classification method to discriminate between...
متن کاملPrediction of Epileptic Seizures in Patients with Temporal Lobe Epilepsy (TLE) based on Cepstrum analysis and AR model of EEG signal
Epilepsy is a chronic disorder of brain function caused by abnormal and excessive electrical neurons discharge in the brain. Seizures cause disturbances in consciousness that occur without prior notice, so their prediction ability, based on EEG data, can reduce stress and improve quality of life. An epileptic patient EEG data consists of five parts: Ictal, Inter-Ictal, pre-Ictal, Post-Ictal, an...
متن کاملLearning discrimination trajectories in EEG sensor space: application to inferring task difficulty.
We describe a spatio-temporal linear discriminator for single-trial classification of multi-channel electroencephalography (EEG). No prior information about the characteristics of the neural activity is required, i.e., the algorithm requires no knowledge about the timing and spatial distribution of the evoked responses. The algorithm finds a temporal delay/window onset time for each EEG channel...
متن کاملBallistocardiogram artifacts in simultaneous EEG- fMRI acquisitions
The simultaneous acquisition of electroencephalograpy (EEG) and functional magnetic resonance imaging (fMRI) data is very promising for the study of cognitive processes and disorders but causes severe artifacts in the EEG. In this study the aim is to remove the ballistocardiogram artifact, caused by cardiac pulse-related movements of the electrodes in the magnetic field. For this purpose a meth...
متن کاملTime-Varying Frequency Fading Channel Tracking In OFDM-PLNC System, Using Kalman Filter
Physical-layer network coding (PLNC) has the ability to drastically improve the throughput of multi-source wireless communication systems. In this paper, we focus on the problem of channel tracking in a Decode-and-Forward (DF) OFDM PLNC system. We proposed a Kalman Filter-based algorithm for tracking the frequency/time fading channel in this system. Tracking of the channel is performed in the t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012